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ABSTRACT: A formal [2 + 2 + 2] cycloaddition reaction
between a 1,3-dione, an olefin, and molecular oxygen mediated
by light is reported, which delivers endoperoxides in good yield
through the formation of two C−O and one C−C bond in one
step. The resulting 1,2-dioxanes are stable compounds and can
be further derivatized at the hemiacetal position via alkylation or
acetylation. All compounds have been evaluated against
Plasmodium falciparum, and the best compound displayed an IC50-value of 180 nM. A potential mechanistic rationale for the
formation of these compounds is presented.

Total synthesis remains a prime source for scientific
discovery, not only for both novel reagents and

transformations but also for interesting structures that can be
obtained by branching off the main synthetic route. This
process, sometimes referred to as diverted chemical synthesis or
chemical editing,1 has led to the development of novel drugs
used in the clinic such as eribulin from halichondrin,2

octreotide from somatostatin,3 or useful tool compounds in
biology.4 In the context of our approach to the complex
hexacyclic terpenoid striatin A (1),5 we developed a route based
on our successful preparation of cyrneine A.6 As a required
precursor to the establishment of the ABC ring system in 2, we
prepared the chiral intermediate 3 (Figure 1). Interestingly, we
observed that this 1,3-dione displayed limited stability upon
exposure to light and air and smoothly underwent a subsequent
transformation to yield an endoperoxide 4 featuring a novel 1,2-
dioxane scaffold.7 Endoperoxides such as cardamom peroxide
(5),8 artemisinin (6),9 or g-factors represented by 710 have
recently attracted much interest from a variety of disciplines,
and a new generation of antimalarial agents has been developed
based on this motif.11 In view of this potential antimalarial
application, and the interesting transformation involved in the
formation of endoperoxides, we chose to investigate these
unexpected series of reactions in detail. In this letter, we
evaluate this unusual formal [2 + 2 + 2] reaction, prepare a
series of endoperoxide hemiacetals, and identify nanomolar
antimalarial agents based on this endoperoxide chemotype.
The synthetic approach started from commercially available

(−)-limonene (8), which was transformed to the known
intermediate 9 following the footsteps of Wender and co-
workers (Scheme 1),12 but by replacing an OsO4/NaIO4
mediated oxidative cleavage by an ozonolysis (see Supporting
Information for details). The allylic alcohol 9 was subjected to a

subsequent Eschenmoser−Claisen rearrangement,13 which
established the quaternary stereogenic center and gave the
amide 10 in excellent yield and selectivity (24:1). Several
methods were evaluated to convert the amide 10 to the known
aldehyde 11,12 and after tedious experimentation, the use of
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Figure 1. Discovery of a new antimalarial endoperoxide scaffold via
diverted total synthesis.
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1,1,3,3-tetramethyldisiloxane in combination with Ti(OiPr)4
furnished the desired intermediate 11 in an excellent yield.14

We then subjected the aldehyde 11 to an L-proline catalyzed
Knoevenagel condensation, and the double bond of the
resulting enedione was chemoselectively reduced in situ using
the Hantzsch ester to give the diketone 3 in very good yield
(91%). Interestingly, upon storage when exposed to air and
light in the laboratory, we observed decomposition by NMR
and visual analysis. Further experiments by dissolving the
diketone 3 in ethyl acetate exposed to air directly yielded the
endoperoxides 4 and 12, separable by flash chromatography,
and which could be obtained in a 65% combined yield and a
diastereomeric ratio of 5:1. The constitution and configuration
of the endoperoxides 4 and 12 were secured by a combination
of X-ray crystal structure analysis and NMR spectroscopy as
well as derivative synthesis (vide inf ra). An excellent yield of
97% and the same diastereomeric ratio were obtained using a
catalytic amount of Mn(OAc)3 in acetic acid exposed to air at
room temperature. These Mn-mediated conditions have been
used for a variety of 1,3-diones by various groups,15 and
applications in the synthesis of complex molecules such as
fusarisetin A have documented their utility.15h

The proposed mechanism (Scheme 2) and the stereo-
chemical course of the reaction warrant a number of comments.
As a first step, autoxidation16 of the diketone 3 can be
postulated, and the subsequently formed radical 13 attacks the
proximal, exocyclic double bond. The tricyclic framework is
forged via a 6-endo-trig cyclization and concomitant C−C bond
formation, giving rise to the tertiary radical 14. While the
hybridization of the trivalent C atom remains unknown, the
configuration determining step must involve subsequent radical
addition to O2 and peroxy radical 15 formation. The
hydroperoxide can then form the hemiacetal 16 by attack to
one of the CO groups. It is likely that this radical will then
carry the chain via H-abstraction of the diketone 3 precursor.
The stereochemical course of the reaction remained puzzling at
first, as the configuration obtained for the major isomer
requires attack of O2 via the sterically more encumbered face of
14. However, we speculate that, in the course of the formation
of the minor diastereoisomer 12, the methyl and isopropyl

groups of 17 are forced in close proximity, which would render
this pathway higher in energy. In addition, formation of the cis-
bicyclo[4.3.0]nonane framework could be preferred over the
corresponding trans isomer for structural reasons, or a
beneficial electronic influence of a carbonyl group on the
SOMO in 14 could be postulated.
We then tested both endoperoxides 4 and 12 against the

malaria parasite Plasmodium falciparum. Interestingly, the minor
compound 12 displayed an IC50 value of 0.18 μM, whereas the
major compound 4 was 40 times less active (7.1 μM). Both
compounds showed very little toxicity against rat myoblasts,
and a high selectivity index of around 1000 for compound 12
can be considered remarkable and suggests potential as a lead
structure.
Based on this encouraging result, a number of derivatives

were subsequently synthesized with the goal of improving the
antiplasmodial activity. In order to obtain the acetoxy derivative
18, standard acetylation conditions such as Ac2O/DMAP in
pyridine or triethylamine only resulted in low conversion or
even decomposition at higher temperatures.10c,15e,17 The use of
a stronger base such as the Barton base 21 finally addressed
these issues, and the acetylated product 18 was obtained in 76%
yield (Scheme 3). Earlier studies on different endoperoxides
demonstrated that acetal formation could lead to improved
values.10b,18 Acetalization of the OH group of both

Scheme 1. Synthesis of the Endoperoxides 4 and 12 Starting
from (S)-(−)-Limonene (8)

Scheme 2. Proposed Mechanistic Cycle for Endoperoxide
Formation via Autooxidation

Scheme 3. Derivative Synthesis
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diasteroisomers 4 and 12 under standard conditions (p-TsOH
(cat.) in MeOH) led to very slow formation of the methylated
species 19 and 20. An improved method consisted of alkylation
with CH3I and Ag2O, which provided the methylated products
19 and 20 in good yields.19 The configuration and constitution
of both compounds were secured by X-ray crystal structure
analysis.
Unfortunately, all derivatives displayed lower antiplasmodial

activity when compared to the hemiacetal isomer 12, while the
cytotoxicity values remained in the same range (Table 1).

Overall, it appears that the hemiacetal function is crucial for
antiplasmodial activity. This is in contrast to other SAR-studies,
whereas a 10× increase in activity could be observed.10b,18,19

In conclusion, an operationally simple, formal [2 + 2 + 2]
reaction involving oxygen was utilized for the preparation of
novel endoperoxide antimalarial scaffolds. The mechanism of
this reaction was postulated to involve autoxidation of the 1,3-
dione, subsequent radical ring closure followed by trapping
with O2, and hemiacetal formation. A series of derivatives were
prepared, and antiplasmodial activity with IC50 values in the
nano- and micromolar range were observed, with little
cytotoxicity. This approach therefore allows for straightforward
access to antimalarial agents from simple and cheap building
blocks.
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